
Answering “If-What” Questions to Manage Batch
Systems

Sainath Batthala*, Neminath Hubballi
Indian Institute of Technology, Indore.

Email: {cse1200106, neminath}@iiti.ac.in
*Student Author

Maitreya Natu, Vaishali Sadaphal
Tata Research Development and Design Centre,

Pune, India.
Email: {maitreya.natu, vaishali.sadaphal}@tcs.com

Abstract—Batch systems are the backbone of all banking
and financial industries. These systems are usually large and
complex and often lack end-to-end transparency. As a result, any
improvement in these systems presents several challenges. In this
paper, we have addressed the problem of “if-what analysis” of
batch systems. This analysis assists the system administrators
to provide recommendations in order to improve batch perfor-
mance, stability, and cost. We define the problem space, discuss
solution ideas, and present initial results through a real-world
case-study.

I. INTRODUCTION

Batch systems play a significant role in today’s business.
Batch jobs perform end-of-day back-office tasks such as data
integration, compliance check, analytics and reporting. A batch
includes a set of jobs with precedence relations. Thus, a job can
start only after all its defined predecessor jobs have completed
execution. The business requirements enforce constraints on
the latest time by which all jobs within the batch must
complete. This time is referred to as the batch completion
time. For instance, in an investment bank, the batch is usually
required to complete before the trading market open time on
the next business day. Delays and failures to meet the batch
completion time result in heavy financial penalties and business
outages. Service Level Agreements (SLAs) are defined for the
business-critical batch jobs and business processes that define
the batch completion time.

Batch systems observe delays or SLA violations due to
various reasons such as increased workload, under-provisioned
compute capacity, among others. Hence, the system admin-
istrators often require to apply various levers to reduce the
batch completion time or to minimize the SLA violations of
business critical jobs. Various levers can be applied to meet
these objectives such as decreasing the run-time of jobs by
adding more compute capacity, or changing the schedules of
jobs to start early, among others. Each of these levers are
associated with a cost and a benefit. Given the large number
of jobs and dependencies, it is a non-trivial task to identify the
right levers on the right jobs to meet the desired objective.

We refer to this analysis as “if-what analysis”. This analysis
answers the questions of the nature - “if I want to achieve an
objective, then what actions should be taken?”. The “if” part of
question is generally dictated by objectives such as reduction in
batch completion time, cost, SLA violations, etc. The answer
for the “what” part of the question can span all aspects of
batch environment such as infrastructure, batch schedule, job

run-times, job dependencies, business processes, etc. Some
examples of if-what questions are:

• If the run-time of a batch is to be reduced by 20% with
the additional annual cost of less than USD 100,000,
then what actions should be taken?

• If start-time and end-time of a batch is to be main-
tained within the desired SLAs in the event of dou-
bling of workload, then what actions should be taken?

The ability to do if-what analysis improve the transparency of
the batch systems and makes the batch environment agile and
resilient. However, large number of batch jobs, complex depen-
dencies, multiple combinations of levers to achieve objectives
make if-what analysis quite challenging.

Past research [2] has focused on what-if analysis that
evaluates the effect of various hypothetical scenarios of batch
system changes such as effect of reducing run-time of a job,
adding/removing jobs or dependencies, etc. Though what-if
analysis is a powerful and important tool, it only answers a
part of the big puzzle. What-if analysis evaluates the impact
of introducing some change in system properties. On the other
hand, if-what analysis is all about identifying the change
that should be introduced to achieve a specific objective. In
other words, if-what requires intelligent navigation through
various what-if scenarios, asking the right what-if questions,
and evaluating the costs and benefits of various levers to derive
the optimal set of levers.

In this paper, we discuss the problem of if-what analysis.
We define the solution space and identify different building
blocks required to develop this solution. We present initial
ideas on developing if-what solutions and demonstrate their
effectiveness through a real-world case-study.

II. DESIGN RATIONALE

In this section, we present initial ideas of the solution space.
Figure 1 explains the data sources and the key building blocks
of the proposed solution.

A. Data sources:

The solution uses feeds from following data sources:

1) System dependencies: We capture all the system
dependencies viz. job-job, business process-job, and
job-host dependencies. Batch jobs depend on each



Fig. 1. Building blocks of the proposed solution.

other through precedence relationships. A job can
start only after all its predecessor jobs have finished.
Jobs run on predefined hosts. Jobs are grouped into
business processes.

2) Job execution history: We analyze the past history of
job executions. It captures the start-time, end-time,
and run-time of each job instance executed in the
past.

3) Job schedule: Each job is associated with an exe-
cution schedule. This schedule defines the condition
for job execution with respect to day of week, day of
month, day of year etc. Some jobs are defined to have
conditions at start-time. For instance, all root jobs are
defined to start on a fixed start-time. In some cases,
business logic demands some intermediate nodes to
have fixed start-times as well.

4) Many business-critical jobs are assigned service-
level agreements which represent the business con-
straints on the start-time, end-time of job. Other
commonly defined SLAs are MAXRUNALARM and
MINRUNALARM that define the maximum time and
minimum time a batch job execution should take.

B. Batch blueprint:

The first step in batch analytics is to construct a blueprint of
the batch system. This involves modelling the batch system as
a directed acyclic graph and annotate every node with attributes
such as run-time, SLA thresholds, associated business process
name, host name, etc. We construct the batch blueprint in two
steps.

1) Construct system model: We model the batch system
as a directed acyclic graph where nodes represent the batch
jobs and edges represent the precedence relationships. We
further enrich each job node with static attributes such as
business-criticality, job schedule, job SLA (if any), associated
business process, host name, etc. In addition, each job node

also contains time-series attributes to capture historical data of
workload, run-time, alerts, etc.

2) Profile job behavior: We next enrich the blueprint by
modelling the normal behavior of each job. This normal
behavior captures various attributes of a job such as trends and
patterns in workload and run-time, change points, outliers, etc.

C. What-if analysis

Given the system model, we perform what-if analysis using
two main building blocks.

1) Model what-if scenario: We first model a what-if sce-
nario by changing the graph model. These changes could be
in nodes, edges, or attributes of the graph model. We model
the following what-if scenarios:

1) Addition or deletion job is modelled by adding or
removing nodes and associated edges.

2) Change in run-time is modelled by changing the run-
time attribute of one or more jobs.

3) Change in workload is modelled by computing the
effect of change in workload on job run-time and
modelling a change in job run-time.

4) Change in CPU is modelled by computing the effect
of change in CPU on job run-time and modelling a
change in job run-time.

2) Estimating effect of change: The impact of change is
then computed by traversing the changed system model and re-
annotating the start-time, run-time, and end-time of batch jobs.
After recomputing the job execution parameters, these values
are compared with SLAs to identify and annotate the jobs
with SLA violations. We use topological or recursive traversal
approach to find the impact.

D. If-what analysis

The solution to an if-what problem requires following
capabilities:
(a) Identifying possible transformation levers
(b) Identifying potential solutions by combining these levers
(c) Estimating the effect of solutions by performing what-if
analysis
(d) Searching for the best solutions to achieve the desired
objective.

1) Define solution search space: This component identifies
the potential set of jobs that can assist in achieving the desired
objective of if-what analysis. A brute-force approach is to
define the search space to explore all combinations of jobs
to find the optimal solution. However, given the large search
space, the brute-force approach is computationally impractical.
Hence, we apply various heuristics to prune the search space.

2) Perform what-if analysis: This component runs what-if
analysis for a given potential solution and estimates its impact
on the batch system. It thus computes the start-time, end-time,
and run-time of each batch job.

3) Perform cost-benefit analysis: Applying a what-if sce-
nario is associated with a cost. For instance, decreasing run-
time of a job might involve adding extra computing capacity.
Similarly, a what-if scenario is associated with benefits such as



decrease in batch run-time, decrease in SLA violations. This
component evaluates various solution levers on various aspects
of cost and benefit to identify the best solution.

III. PROPOSED APPROACH

As mentioned earlier in Section I, if-what analysis requires
intelligent navigation through various what-if scenarios. Con-
sider the following if-what question - “If the run-time of a
batch is to be reduced by 20% with the additional annual
cost less than USD 100,000, then what actions should be
taken?”. The solution space for this problem consists of many
entities, such as jobs, dependencies, CPUs, etc. Each entity
is associated with different transformation levers, such as
increase/decrease run-time of jobs, add/delete dependencies,
or increase/decrease CPUs.

The brute-force approach is to explore all possible com-
binations of levers on all jobs and estimate their impact.
However, given the large scale of batch jobs (in the order of
100,000 jobs), this approach is not scalable. Hence, we propose
various heuristics to intelligently prune irrelevant solutions and
efficiently navigate through the relevant solution space.

We explain the proposed approach for if-what analysis
using two transformation levers viz. reduce run-time of job,
change start-times of root jobs. For clarity, we limit the below
discussion to the if-what objective of finding best solutions to
decrease the end-to-end batch completion time by Y units.

A. Reduce run-time of jobs

One of the most common levers to improve batch com-
pletion time is to reduce the run-time of one or more jobs.
However, the challenge is to identify the smallest set of jobs
whose reduction in run-time can lead to the desired impact on
the batch completion time.

The if-what question that we consider is:

If the batch duration is to be reduced by Y units of
time, then what is minimum number of jobs whose
run-time needs to be reduced by X%?

A brute-force approach is to explore all combinations of
batch jobs. However, this is not a scalable solution, hence we
present a heuristic-based approach to intelligently prune the
space and answer this if-what question.

1) Consider that BatchEndTime represents the current
batch end-time, and DesiredBatchEndTime refers to
BatchEndTime - Y, where Y is the amount of time by
which the batch duration needs to be reduced.

2) Instead of analyzing all nodes, we first identify the
leaf jobs that end after DesiredBatchEndTime. To
meet the objective of reducing batch duration by Y
units, it is imperative to ensure that these leaf jobs
finish before the DesiredfBatchEndTime. We refer to
these leaf jobs as TargetLeafJobs.

3) End time of TargetLeafJobs can be improved only by
any changes in their upstream jobs. Thus, the search
space is now reduced to TargetLeafJobs and their
upstream jobs. We refer to this set as UpstreamTo-
TargetLeafJobs.

Fig. 2. Example to demonstrate the effect of reduction in run-time of jobs.

4) We now systematically apply apriori search to explore
combinations of the jobs in the set UpstreamTo-
TargetLeafJobs. We start with sets of size 1 and
incrementally increase the combination size to 2, 3,
and so on.

5) For each combination C, we apply what-if analysis
to compute the impact of reducing run-time of jobs
in C by X% on the overall batch duration.

6) The combination that provides the desired objective
of reducing batch duration by Y units is identified as
the solution for the if-what question.

1) Example: We next illustrate the above method with an
example. Consider the batch system shown in Figure 2. The
if-what objective is to reduce batch duration by 30 minutes by
reducing the run-time of minimum number of jobs by 50%.

1) BatchEndTime = 14:00 and DesiredBatchEndTime =
13:30.

2) The only target leaf in this case is job H that ends
after DesiredBatchEndTime.

3) Thus, the pruned search space now limits to H and
its upstream jobs. Thus, UpstreamToTargetLeafJobs
= {A,B,D,E,H}.

4) We first explore subsets of size 1 and perform what-if
analysis to estimate their impact on batch duration.
The impact of subsets {A}, {D}, {E}, {B}, {H} on
batch duration are 0 mins, 0 mins, 0 mins, 30 mins,
30 mins, respectively.

5) It can be observed that the batch duration can be
reduced by 30 minutes by reducing run-time of job
B or H by 50%.

B. Change start-times of root jobs

We next present another scenario where we reduce the
batch end-time by changing the start-time of the root jobs.
In this section, we demonstrate an approach to identify the
minimum number of root jobs that can lead to the desired
impact on batch end-time.

The if-what question that we consider is:

If the batch end-time is to be reduced by Y units of
time, then what is the minimum number of root jobs
whose start-time needs to be reduced?

Below, we present the steps to identify these root jobs.

1) Similar to previous section, we define BatchEndTime,
and DesiredBatchEndTime, and TargetLeafJobs.



Fig. 3. Example to demonstrate the effect of reduction in start-time of root
jobs.

2) Similar to previous section, we focus only on the
TargetLeafJobs and their upstream jobs.

3) We iteratively select one of the leaf jobs in Tar-
getLeafJobs. For each such leaf job we compute the
amount of time by which the start-time of root jobs
in its upstream tree needs to be reduced, such that the
leaf job finishes before the DesiredBatchEndTime.

4) Given a leaf node L, the time by which the start-
time of the root jobs in its upstream tree need to be
reduced is computed as follows:
• Consider a node N with parent P . In order

to reduce the end-time of node N by Y units,
the start-time of P needs to be reduced by Y
units. However, often there exists a slack time
SPN between the end of job P and start of
job N . Slack is the delay between the start
of a child job after the end of the parent job.
This slack can be removed. Hence, the start-
time of P needs to be reduced by Y − SPN

units.
• In cases where a parent node P has more than

one child nodes, then the desired reduction
in start-time is computed as the maximum
of the desired reduction in start-time required
for each of its child nodes. ReductionInStart-
Time(P) is computed as follows:

max(∀Ni∈ChildNodes(P )(YNi − SPNi)) (1)

where YNi refers to the amount of time by
which end-time of node Ni needs to be re-
duced, and SPNi refers to the slack time
between nodes P and Ni.

• Given a leaf job L, we perform reverse topo-
logical sort of its upstream jobs and compute
the desired start-time of each of the upstream
jobs using the above concept. We thus derive
the desired start-time of the root-jobs in the
upstream tree of the leaf job L.

5) We next perform what-if analysis to compute the
impact of reducing start-time of the identified root
jobs on the batch end-time.

6) If the desired objective is not met, then we repeat the
above steps for the remaining set of TargetLeafJobs.

1) Example: We explain the above approach with an ex-
ample.

Consider the batch system shown in Figure 3. The objective
is to decrease batch end-time by 2 hours by changing the start-
time of the minimum number of root jobs.

Fig. 4. Comparision of batch schedule before and after reducing the run-time
of P and Q.

In this case, the target leaves are {F,G}. The search space
is upstream of {F,G}, which is {A,B,C,D,E,F,G}.

1) BatchEndTime = 07:00 and DesiredBatchEndTime =
05:00.

2) The target leaf jobs that end after DesiredBatchEnd-
Time are {F,G}.

3) For each leaf, we traverse the search space of its
upstream jobs in reverse topological order.

4) We derive that batch end-time can be reduced by 2
hours by reducing the start-time of C by 2 hours and
D by 1 hour.

IV. EXPERIMENTAL RESULTS

We share the results for if-what analysis with 2 transfor-
mation levers on 2 real world batch systems of leading banks
in the US. The job names have been masked for the purpose
of confidentiality.

A. Reduce run-time of job

The batch consists of 270 jobs, 11 business processes, 444
precedence relationships. There are 7 root jobs and 59 leaf
jobs in the batch. The batch ran for 9.74 hours.

We analyze the impact of reducing run-time of jobs. We
compute the minimum number of jobs whose run-time should
be reduced by 50%, so that batch duration is reduced by 1
hour. Initially, the batch is starting at 13:45:00 PM and ending
at 23:29:41 PM. The aim is to make sure batch ends on or
before 22:29:41 PM. Initially, the search space consists of all
270 jobs. However, only those leaf jobs need to finish earlier
which are ending after 22:29:41 AM. As mentioned earlier in
Section II-D, these leaf jobs are called target leaves. In this
case, there are only 5 target leaves. As we need to move up
only these 5 jobs, we prune the solution search space from
all 270 jobs to upstream of target leaves which has only 36
jobs. Now, we identify minimum number of jobs from search
space whose run-time reduction by 50% can meet our goal.
We compute the impact of reducing run-time of all subsets of
jobs of size 1 by performing what-if analysis. This did not
achieve the objective. We then computed the impact of all
subsets of size 2 and so on. Finally, the objective was achieved
by changing the run-time of two jobs P,Q by 50% (P ’s run-
time changed from 5334 to 2677 seconds and Q’s run-time
changed from 6482 to 3241 seconds). This can reduce the
batch duration by 1.6 hours. Figure 4 shows the time series of
batch before and after changing the run-time of jobs P and Q.



Fig. 5. Comparision of batch schedule before and after reducing the start-time
of A, B, C and D.

Each blue circle represents a job in the batch. The jobs P and Q
are highlighted with green (before) and red (after) colors. The
reduction in batch duration by the upward movement of jobs
after changing run-time of P and Q can be clearly observed.

B. Change start-times of roots

We consider another batch with 276 jobs, 13 business
processes, 449 dependencies. The batch is running for 11.31
hours.

We reduce the batch end-time by starting the root jobs
earlier. We compute minimum number of root jobs that should
start earlier to finish the batch earier by 2 hours. There are
59 target leaves. We traverse the upstream of target leaves in
reverse topological order and calculate the upward movement
of nodes. We found that by starting root A earlier by by 4589
seconds, B by 5564 seconds, C by 7200 seconds, D by 3555
seconds, batch can finish earlier by 2 hours. Out of 8 roots
only 4 roots had to start earlier than the current time.

Figure 5 shows the batch run before and after reducing the
start-time of root jobs A, B, C and D. Each blue circle repre-
sents a job in the batch. The jobs {A,B,C,D} are highlighted
with green (before) and red (after) colors. The reduction in
batch end-time by the upward movement of jobs after changing
start-time of of A, B, C and D can be clearly observed.

V. RELATED WORK

Work has been done in the past on what-if analysis for
non-batch distributed systems. Authors in WISE [6] answer
questions related to deployment and configuration for CDNs.
[4] predicts the impact of workload change in complex cloud
applications. [5] presents Predico, a workload-based what-
if analysis system that uses commonly available monitoring
information in large scale systems to ask a variety of workload-
based “what-if” queries about the system.

Authors in [1] focus on scheduling of batch jobs on multi-
processor systems such that batch finishes in minimum time
with minimum resource utilization. [3] explains methods to
perform if-what analysis on datacenters.

We leverage the past work and build on top of it to develop
the capability of if-what analysis.

VI. CONCLUSION AND FUTURE WORK

We presented the initial ideas to address if-what analysis
of batch systems. We discussed an approach to model the

operations of a batch system and answered if-what questions.
We demonstrated the effectiveness of the proposed approach
through experiments.

There are several open issues and unanswered problems
in this space. As a part of our ongoing research, we will
address a more comprehensive set of if-what questions and
define a wider variety of solution levers. Our approach to if-
what analysis is not limited to batch systems and we strongly
believe that it is generic and can be extended to transactional
systems as well.

Currently, we are performing if-what analysis on past batch
runs. An interesting direction to pursue is to perform if-
what analysis on predicted batch schedules and recommend
proactive measures to avoid business penalties.

We believe that if-what analysis can provide a powerful
lever to open several avenues for strategy planning for tech-
nology and business.

REFERENCES

[1] Rushi Agrawal and Vaishali Sadaphal. Batch systems: Optimal schedul-
ing and processor optimization. Student Research Symposium, HiPC -
IEEE International Conference on High Performance Computing, 2011.

[2] Pushkar Gupta, Aruna Malapati, Maitreya Natu, and Vaishali Sadaphal.
Toward predictable batch systems using what-if analysis. Student
Research Symposium, HiPC - IEEE International Conference on High
Performance Computing, 2014.

[3] Vaishali Sadaphal, Maitreya Natu, Harrick Vin, and Prashant Shenoy.
If-what analysis for data center transformations. In Proceedings of the
Workshop on Posters and Demos Track, PDT ’11, pages 13:1–13:2, New
York, NY, USA, 2011. ACM.

[4] Rahul Singh, Prashant Shenoy, Maitreya Natu, Vaishali Sadaphal, and
Harrick Vin. Analytical modeling for what-if analysis in complex cloud
computing applications. SIGMETRICS Perform. Eval. Rev., 40(4):53–62,
April 2013.

[5] Rahul Singh, Prashant J. Shenoy, Maitreya Natu, Vaishali P. Sadaphal,
and Harrick M. Vin. Predico: A system for what-if analysis in complex
data center applications. In Middleware 2011 - ACM/IFIP/USENIX 12th
International Middleware Conference, Lisbon, Portugal, December 12-
16, 2011. Proceedings, pages 123–142, 2011.

[6] Muhammad Mukarram Bin Tariq, Amgad Zeitoun, Vytautas Valancius,
Nick Feamster, and Mostafa H. Ammar. Answering what-if deployment
and configuration questions with wise. In Proceedings of the ACM SIG-
COMM 2008 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Seattle, WA, USA, August
17-22, 2008, pages 99–110, 2008.


